Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 4, 2026
-
Free, publicly-accessible full text available May 4, 2026
-
Blasch, Erik; Celik, Nurcin; Darema, Frederica; Metaxas, Dimitris (Ed.)Free, publicly-accessible full text available April 20, 2026
-
Darema, Frederica; Blasch, Erik; Chatzoudis, Gerasimos (Ed.)Free, publicly-accessible full text available May 1, 2026
-
Free, publicly-accessible full text available February 27, 2026
-
Darema, Frederica; Blasch, Erik; Chatzoudis, Gerasimos (Ed.)Free, publicly-accessible full text available May 1, 2026
-
Free, publicly-accessible full text available November 17, 2025
-
Abstract To enable real-time control of next-generation active structures during shock events, there is a need to identify the start of a shock event within microseconds of its initiation. The delayed classification of a shock event may cause damage to the system that could have been prevented with assumed next-generation active control mechanisms. Addressing the challenge of ultra-low latency shock event classification requires utilizing prior information on normal behaviors (i.e., the system under vibrational loading) to identify abnormalities that can be classified as features of a shock event. The purpose of changepoint shock classification is to automatically recognize when a structure of interest behaves differently than expected in some measurable way. In this work, we analyze two different methods for shock classification using changepoint methodologies. We study the use of adaptive cumulative summation and expectation maximization algorithms in this work. Each method presents advantages and disadvantages for different scenarios. This study aims to derive features (streams of time series data) for the changepoint algorithms and revise the changepoint models to be used in real-time robust shock event detection. In this work, a printed circuit board under continuous vibrations before, during, and after a shock event is used to investigate the proposed methodologies. The printed circuit board is monitored with an accelerometer that is used to monitor both the vibrational and shock state of the system. The vibrational response of the system consists of accelerations up to 20 m/s2, while the shock event consists of loadings up to 2,000 m/s2. This work showed that the CUSUM algorithm is fairly effective at identifying the shock state in data but generates many false positives during normal behavior times, with no false positives post-shock, indicating accurate shock state detection despite early errors. In contrast, the Expectation Maximization (EM) algorithm shows improved performance by correctly predicting no shock in the initial phase and accurately identifying the onset of the shock state. It occasionally misclassifies shocked points as normal due to its change point identification process. Compared to CUSUM, EM has fewer false positives before the shock and similar performance during and after the shock event. Future research efforts will focus on developing online versions of these algorithms, which can identify system states with a minimum number of errors. The limitations of the system and its robustness to noise are discussed.more » « less
-
Abstract Levees play a critical role in safeguarding communities and assets from flooding, acting as essential defenses against the devastating impacts of inundation. Yet, earthen levees are prone to breaches, especially in the face of swift floodwaters. Distributed low-cost sensor networks offer the potential to generate spatial maps illustrating soil moisture levels. Long-term monitoring of these spatial maps could identify vulnerable zones in the levee while providing an understanding of how climate change affects levee stability. This study presents an investigation into spatial monitoring of soil saturation in levees using a wireless network of UAV-deployable sensing spike packages. The goal of this paper is to demonstrate the use of these sensors for assessing soil conductivity levels in sand-filled embankments. The obtained soil conductivity levels are crucial for determining soil saturation. The developed sensing spikes consist of a spike that penetrates the ground and measures conductivity between two electrically conductive contacts. The sensing spike consists of microprocessors for edge computing, and wireless data communication systems that report data to a way station in real-time. To validate the efficacy of the developed sensors, a flume test is developed as a replica of a levee and monitored under controlled water flow conditions. The analysis of data at different times revealed the progression of moisture throughout the earthen embankment. Initially, the soil is almost dry. As the controlled water flow proceeds, the soil becomes partially saturated, with the final stage showing a dominant presence of saturated soil. The collected data sampled at the measurement points is expanded to a continuous moisture profile using kriging. Gaussian kriging, also known as ordinary kriging, is one of the commonly used variants of the kriging method. In Gaussian kriging, the estimation of values at unsampled locations is based on a linear combination of nearby data points, with weights determined by their spatial relationships. The Gaussian assumption implies that the errors in the estimation process follow a normal distribution. The extended knowledge about saturation levels obtained through kriging can lead to insights for predicting vulnerable areas and preempting potential failures. Overall, this study paves the way for further development of a wireless network of sensing spike packages as a UAV-deployable system for levee health assessment and improved infrastructure management.more » « lessFree, publicly-accessible full text available November 17, 2025
An official website of the United States government
